二次函数有哪些知识点要记住?

更新:2020年09月04日 16:11金博宝188官网
高考是一个是一场千军万马过独木桥的战役。面对高考,考生总是有很多困惑,什么时候开始报名?高考体检对报考专业有什么影响?什么时候填报志愿?怎么填报志愿?等等,为了帮助考生解惑,金博宝188官网整理了二次函数有哪些知识点要记住?相关信息,供考生参考,一起来看一下吧
二次函数有哪些知识点要记住?

  二次函数是初中数学学习的重、难点,对于初中生来说还是很难对其进行灵活运用的。因此,大部分学生在解题时还存在着一定的困难,在处理这部分内容时,容易出错,经常由于很小的疏忽,导致整道题丢分,但从发散学生思维与开发学生数学能力的角度看,在初中对学生的函数能力进行培养是很必要的。为了帮助大家更好地学习二次函数,小编在此整理了一份次函数知识点总结,希望对你有所帮助。

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大.)<> <0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大.)<><0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大.)<><0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大.)<>

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x= -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P( -b/2a ,(4ac-b^2)/4a )

  当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。<> <0时,抛物线向下开口。<><0时,抛物线向下开口。<><0时,抛物线向下开口。<>

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。<> <0),对称轴在y轴右。<><0),对称轴在y轴右。<><0),对称轴在y轴右。<>

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)<><0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)<>

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x-h)^2(h,0) x=h

  y=a(x-h)^2+k(h,k) x=h

  y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.<> <0时,则向左平行移动|h|个单位得到.<><0时,则向左平行移动|h|个单位得到.<><0时,则向左平行移动|h|个单位得到.<>

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<> <0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<><0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<><0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<>

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<> <0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<><0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<><0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;<>

  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大*置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.初中重点考察的二次函数很容易与其他知识结合变成难倒无数考生的综合性题目。因此,以二次函数知识点为主的综合性题目是中考的热点考题,往往以大题形式出现。

以上就是金博宝188官网为大家带来的二次函数有哪些知识点要记住?,希望能帮助到广大考生!
与“二次函数有哪些知识点要记住?”相关推荐

每周推荐

北京2024年出国留学托福考试费用

北京2024年出国留学托福考试费用

时间:2024年03月02日
天津2024年出国留学托福考试费用

天津2024年出国留学托福考试费用

时间:2024年03月02日



最新文章

四川专科航空学校名单公布

四川专科航空学校名单公布

时间:2024年01月05日

热门高校更多




联系我们- 课程中心
鲁ICP备18049789号-7

2020金博宝188官网版权所有 All right reserved. 版权所有

警告:未经本网授权不得转载、摘编或利用其它方式使用上述作品


Baidu
map