院校排名函数的概念总结 高中函数知识点总结

更新:2023年06月03日 07:38金博宝188官网

今天,金博宝188官网小编为大家带来了院校排名函数的概念总结 高中函数知识点总结,希望能帮助到广大考生和家长,一起来看看吧!
院校排名函数的概念总结 高中函数知识点总结

函数概念总结为6个字?

奇变偶不变,符号看象限。
其中“奇变偶不变”指的是参数k如果是奇数,则正弦变余弦,余弦变正弦;如果k是偶数,则保持与原式子相同的正余弦性。“符号看象限”的意思是:假设x为锐角,如果原式为负,则最后转换的式子的前面要加负号;如果为正,则最后转化的式子的前面无须加符号。
而正余切的转化同样遵循“奇变偶不变,符号看象限”的原则。

常见函数定义域,值域的求法总结

值域求法:
(1)直接法
(2)图象法(数形结合)
(3)函数单调性法
(4)配方法
(5)换元法 (包括三角换元)
(6)反函数法(逆求法)
(7)分离常数法
(8)判别式法
(9)复合函数法
(10)不等式法
(11)平方法
等等

高中数学知识点总结——函数

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法

三、函数的值域的常用求法:

1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

四、函数的最值的常用求法:

1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数

2、若f(x)为增(减)函数,则-f(x)为减(增)函数

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高中函数知识点总结

高中函数知识点总结,参考以下内容。

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中xfkIT+TT/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法。

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法。

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法。

五、函数单调性的常用结论:

1、若(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

学好高中数学函数的方法:

1、课前预习教材。高中生想要学好数学,可以养成课前预习的好习惯。就是提前把老师第二天要讲的内容预习一下,看看自己哪里能看懂,哪里不懂。这样才能在老师讲课的时候,带着问题有针对性地去听。

2、上课专心听讲。很多高中生数学不好的原因,往往是因为没有认真听课。很多同学都认为老师讲的已经懂了,就不认真听了,但是在自己做题的时候,却往往做不对题。上课专心听讲往往是比课下自己学习要效果更好。

3、准备笔记本。高中生要准备一个笔记本,笔记本并不是让你记公式和概念的,这些的东西书上都是有的,笔记本主要是要记老师给的例题。毕竟老师是很有经验的,他们给的例题都是有一定的代表性的,把例题研究透对于数学成绩的提高是有很大的助益的。

函数定义域总结是什么?

函数定义域总结是:

(1)自然定义域,若函数的对应关系有解析表达式来表示,则使解析式有意义的自变量的取值范围称为自然定义域。

(2)函数有具体应用的实际背景。

(3)人为定义的定义域。例如,在研究某个函数时,仅考察函数的自变量x在[0,10]范围内的一段函数关系,因此定义函数的定义域为[0,10]。

其主要根据:

①分式的分母不能为零。

②偶次方根的被开方数不小于零。

③对数函数的真数必须大于零。

④指数函数和对数函数的底数必须大于零且不等于1。

以上就是金博宝188官网整理的院校排名函数的概念总结 高中函数知识点总结相关内容,想要了解更多信息,敬请查阅金博宝188官网。

与“院校排名函数的概念总结 高中函数知识点总结”相关推荐

每周推荐




最新文章

热门高校更多




联系我们- 课程中心
鲁ICP备18049789号-7

2020金博宝188官网版权所有 All right reserved. 版权所有

警告:未经本网授权不得转载、摘编或利用其它方式使用上述作品


Baidu
map